User-driven narrative variation in large story domains using monte carlo tree search

نویسندگان

  • Bilal Kartal
  • John Koenig
  • Stephen J. Guy
چکیده

Planning-based techniques are powerful tools for automated narrative generation, however, as the planning domain grows in the number of possible actions traditional planning techniques suffer from a combinatorial explosion. In this work, we apply Monte Carlo Tree Search to goal-driven narrative generation. We demonstrate our approach to have an order of magnitude improvement in performance over traditional search techniques when planning over large story domains. Additionally, we propose a Bayesian story evaluation method to guide the planning towards believable narratives which achieve user-defined goals. Finally, we present an interactive user interface which enables users of our framework to modify the believability of different actions, resulting in greater narrative variety.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating Believable Stories in Large Domains

Planning-based techniques are a very powerful tool for automated story generation. However, as the number of possible actions increases, traditional planning techniques suffer from a combinatorial explosion due to large branching factors. In this work, we apply Monte Carlo Tree Search (MCTS) techniques to generate stories in domains with large numbers of possible actions (100+). Our approach em...

متن کامل

Generate Believable Causal Plots with User Preferences Using Constrained Monte Carlo Tree Search

We construct a large scale of causal knowledge in term of Fabula elements by extracting causal links from existing common sense ontology ConceptNet5. We design a Constrained Monte Carlo Tree Search (cMCTS) algorithm that allows users to specify positive and negative concepts to appear in the generated stories. cMCTS can find a believable causal story plot. We show the merits by experiments and ...

متن کامل

Stochastic Planning in Large Search Spaces

Multi-agent planning approaches are employed for many problems including task allocation, surveillance and video games. In the first part of my thesis, we study two multi-robot planning problems, i.e. patrolling and task allocation. For the patrolling problem, we present a novel stochastic search technique, Monte Carlo Tree Search with Useful Cycles, that can generate optimal cyclic patrol poli...

متن کامل

Data Driven Sokoban Puzzle Generation with Monte Carlo Tree Search

In this work, we propose a Monte Carlo Tree Search (MCTS) based approach to procedurally generate Sokoban puzzles. Our method generates puzzles through simulated game play, guaranteeing solvability in all generated puzzles. We perform a user study to infer features that are efficient to compute and are highly correlated with expected puzzle difficulty. We combine several of these features into ...

متن کامل

Nested Monte-Carlo Tree Search for Online Planning in Large MDPs

Monte-Carlo Tree Search (MCTS) is state of the art for online planning in large MDPs. It is a best-first, sample-based search algorithm in which every state in the search tree is evaluated by the average outcome of Monte-Carlo rollouts from that state. These rollouts are typically random or directed by a simple, domain-dependent heuristic. We propose Nested Monte-Carlo Tree Search (NMCTS), in w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014